King Saud University Repository >
King Saud University >
Science Colleges >
College of Science >
College of Science >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/10891

Title: Weak solutions of quasilinear biharmonic problems with convex nonlin- earities
Authors: Imed ABID
Mohamed JLELI
Keywords: existence of positive
Issue Date: 18-Jan-2011
Abstract: We study the existence of positive weak solutions to a fourth-order semi- linear elliptic equation with Navier boundary conditions and a positive, increasing and convex source term. We also prove the uniqueness of extremal solutions. In particular, we generalize results of Mironescu and R˘adulescu for the bi-Laplacian operator.
URI: http://hdl.handle.net/123456789/10891
Appears in Collections:College of Science

Files in This Item:

File Description SizeFormat
5.docx12.05 kBMicrosoft Word XMLView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2009 MIT and Hewlett-Packard - Feedback