King Saud University Repository >
King Saud University >
Science Colleges >
College of Engineering >
College of Engineering >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/12248

Title: Identification of hydrodynamics characteristics in bubble columns through analysis of acoustic sound measurements-Influence of the liquid phase properties
Authors: Al-Masry, Ali, E., W.A.,
Keywords: Acoustic; Bubble column; Bubble size distribution; Coalescence; Hydrodynamics
Issue Date: 200
Publisher: Elsevier B.V.
Citation: 02552701
Abstract: The effects of liquid properties on the hydrodynamics of bubble columns were investigated experimentally through analysis of acoustic sound measurements, using coalescence and non-coalescence mediums. The hydrodynamics parameters such as gas holdup, average bubble radius, gas bubbling rate, root mean square of the sound pressure and damping ratio of the bubble pulsation were investigated at the sparger and bulk regions. The acoustic study revealed that the addition of carboxymethyl cellulose (CMC) and xanthan gum (XG) in small percentage increased the overall gas holdup and reduced the average bubble radius. Moreover, the bubbling rate for these solutions is lower than that for water at low superficial gas velocities. These observations were more apparent in the CMC case. The injection of KCl and silicon polymer substances however, resulted in reduction of the gas holdup and enlargement of the bubble size. In addition, the bubbling rate for the KCl and silicon polymer solutions is found to be superior to that for water. In addition, it is found that acoustic measurements can be used to detect sparger activity for both air-water and non-Newtonian solutions systems. At low superficial gas velocity, the sparger acts as a nozzle, hence heterogeneous bubble size distribution was observed and detected. At high superficial gas velocity, the sparger becomes fully activated and consequently homogeneous size distribution was detected.
URI: http://hdl.handle.net/123456789/12248
ISSN: 02552701
Appears in Collections:College of Engineering

Files in This Item:

File Description SizeFormat
Eng-Che-Masry-10.docx35.57 kBMicrosoft Word XMLView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2009 MIT and Hewlett-Packard - Feedback