King Saud University Repository >
King Saud University >
Science Colleges >
College of Computer and Information Sciences >
College of Computer and Information Sciences >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/14956

Title: Authors of Bangla Phoneme Recognition for ASR Using Multilayer Neural Network
Authors: Mohammed Rokibul Alam Kotwal
Manoj Bonik
Qamrun Nahar Eity
Ghulam Muhammad
تاريخ النشر: 2010
Publisher: IEEE Xplore
Abstract: This paper presents a Bangla phoneme recognition method for Automatic Speech Recognition (ASR). The method consists of three stages: i) a multilayer neural network (MLN), which converts acoustic features, mel frequency cepstral coefficients (MFCCs), into phoneme probabilities, ii) the phoneme probabilities obtained from the first stage and corresponding Δ and ΔΔ are inserted into another MLN to improve the phoneme probabilities by reducing the context effect and (iii) the phoneme probabilities of current frame and corresponding MFCCs are fed into a hidden Markov model (HMM) based classifier to obtain more accurate phoneme strings. From the experiments on Bangla speech corpus prepared by us, it is observed that the proposed method provides higher phoneme recognition performance than the existing method. Moreover, it requires a fewer mixture components in the HMMs.
URI: http://hdl.handle.net/123456789/14956
يظهر في المجموعات:College of Computer and Information Sciences

:الملفات في هذا العنصر

ملف وصف حجمالنوع
Dr Gulam-22-conf.docx14.15 kBMicrosoft Word XMLعرض\u0641تح

جميع جميع الابحاث محمية بموجب حقوق الطباعة، جميع الحقوق محفوظة.


البرمجيات DSpace حقوق المؤلف © 2002-2009 معهد ماساتشوستس للتكنولوجيا و Hewlet Packard - التغذية الراجعة