DSpace

King Saud University Repository >
King Saud University >
COLLEGES >
Science Colleges >
College of Computer and Information Sciences >
College of Computer and Information Sciences >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/15172

Title: Face Recognition Using Incremental Principal Components Analysis,
Authors: Hatim A
Aboalsamh
Keywords: Incremental principal components analysis (IPCA), candid covariance-free IPCA (CCIPCA), batch PCA, IPCA training and relearning strategies
تاريخ النشر: 2009
Publisher: IEEE Computer Society
Abstract: Human face recognition plays a significant role in security applications for access control and real time video surveillance systems, and robotics. Popular approaches for face recognition, such as principal components analysis (PCA), rely on static datasets where training is carried in a batch-mode on a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning new training images are continuously added to the original set; this would trigger a costly frequent re-computation of the eigen space representation via repeating an entire batch-based training that includes the new images. Incremental PCA methods allow adding new images and updating the PCA representation, and offer the advantage of dispensing with the recently added images after model update. In this paper, various incremental PCA (IPCA) training and relearning strategies are proposed and applied to the candid covariance-free incremental principal component algorithm. The effect of the number of increments and size of the eigen vectors on the correct rate of recognition are studied. The results suggest that batch PCA is inferior to the four considered IPCA1-4, and that all IPCAs are practically equivalent with IPCA3 yielding slightly better results than the other IPCAs.
URI: http://hdl.handle.net/123456789/15172
يظهر في المجموعات:College of Computer and Information Sciences

:الملفات في هذا العنصر

ملف وصف حجمالنوع
Dr.Hassan mathkour-2-conf.docx15.16 kBMicrosoft Word XMLعرض\u0641تح

جميع جميع الابحاث محمية بموجب حقوق الطباعة، جميع الحقوق محفوظة.

 

البرمجيات DSpace حقوق المؤلف © 2002-2009 معهد ماساتشوستس للتكنولوجيا و Hewlet Packard - التغذية الراجعة