King Saud University Repository >
King Saud University >
Science Colleges >
College of Computer and Information Sciences >
College of Computer and Information Sciences >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/15256

Title: Improved Distributed Genetic Algorithms Based on Their Methodologies
Authors: Arwa Al-Edaily
Nada Al-Zaben
Sharefah Al-Ghamdi
Hatim Aboalsamh
Keywords: Genetic Algorithm, Distributed Genetic Algorithm , Distributed Genetic Algorithm performance
تاريخ النشر: 2011
Abstract: In this paper we evaluates the effectiveness of three different distributed genetic algorithms (DGAs). The first one is DGA with Diversity Guided Migration, second one is DGA with Automated Adaptive Migration and the last one is DGA with Bicoded chromosomes and confidence rates. All these algorithms were investigated to improve the overall quality of solutions in the distributed genetic algorithm for different problems. Our comparison between those algorithms depended on some important factors ;like, achieving diversity in selecting individuals, process of replacing the individuals between subpopulations, computational time and memory space. As a result, DGA with Diversity Guided Migration (DGM), was nominated to be better than the other DGAs. It improves the performance for many problems and search spaces.
URI: http://hdl.handle.net/123456789/15256
يظهر في المجموعات:College of Computer and Information Sciences

:الملفات في هذا العنصر

ملف وصف حجمالنوع
DrHatim_Conf_11.docx12.5 kBMicrosoft Word XMLعرض\u0641تح

جميع جميع الابحاث محمية بموجب حقوق الطباعة، جميع الحقوق محفوظة.


البرمجيات DSpace حقوق المؤلف © 2002-2009 معهد ماساتشوستس للتكنولوجيا و Hewlet Packard - التغذية الراجعة