DSpace

King Saud University Repository >
King Saud University >
COLLEGES >
Science Colleges >
College of Computer and Information Sciences >
College of Computer and Information Sciences >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/15663

Title: A Novel Quantum Behaved Particle Swarm Optimization Algorithm with Chaotic Search for Image Alignment
Authors: Souham Meshoul
Mohamed Batouche
Issue Date: 2010
Abstract: In an attempt to improve existing evolutionary metaheuristics quantum computing principles have been used. While some of them focus on the representation scheme adopted others deal with the behavior of the underlying algorithm. In this paper, we propose a search strategy that combines the ideas of use of a chaotic search with a selection operation within a quantum behaved Particle Swarm optimization algorithm. This search strategy is developed in order to achieve image alignment through maximization of an entropic measure: mutual information. The proposed framework is general as it handles any kind of transformation. Experimental results show the effectiveness of the algorithm to achieve good quality alignment for both mono modality and multimodality images. The proposed combination of the two features has lead to better solutions compared to those obtained by using each feature alone.
URI: http://hdl.handle.net/123456789/15663
Appears in Collections:College of Computer and Information Sciences

Files in This Item:

File Description SizeFormat
DrBatouche-conf-11.docx12.55 kBMicrosoft Word XMLView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback