King Saud University Repository >
King Saud University >
Science Colleges >
College of Computer and Information Sciences >
College of Computer and Information Sciences >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/17612

Title: Ensemble Classifiers for Dynamic Signature Authentication
Authors: Al-Muhanna, Nora.
Meshoul, Souham.
Keywords: Ensemble Classifiers; Fisher based Probabilistic Neural Network; Dynamic signature authentication.
تاريخ النشر: 2011
Publisher: IEEE
Abstract: Rapid advances in technology, that made almost everything goes digital have entailed a persistent need for a stronger means of information security. Furthermore, new advanced devices are now available to capture the dynamic of a person’s signature. Therefore, the reliance on the dynamic signature for authenticating entities in secure system became crucial. In this paper, we investigate the problem of dynamic signature verification and recognition using Ensemble of Classifiers, where we used multiple Fisher based probabilistic neural networks as the component classifiers to construct the Ensemble. Two key issues are studied; the first issue is how to construct the Ensemble. The second issue is how to combine the predictions of the component classifiers in order to accomplish the decision-making process. Data sets from SVC dataset have been used to assess the performance of the proposed ensemble of classifiers. Obtained results are very encouraging and show the ability of ensemble classifiers to deal with the tackled problem.
URI: http://hdl.handle.net/123456789/17612
يظهر في المجموعات:College of Computer and Information Sciences

:الملفات في هذا العنصر

ملف وصف حجمالنوع
Souham-1.docx12.37 kBMicrosoft Word XMLعرض\u0641تح

جميع جميع الابحاث محمية بموجب حقوق الطباعة، جميع الحقوق محفوظة.


البرمجيات DSpace حقوق المؤلف © 2002-2009 معهد ماساتشوستس للتكنولوجيا و Hewlet Packard - التغذية الراجعة